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MULTI-LOBED INFLATED MEMBRANES:
THEIR STABILITY UNDER FINITE DEFORMATION
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Abstract-The stability of inflated membraneous spheres of rubber-like materials is examined theoretically and
stability criteria are confirmed by experiment. A negative pressure-volume gradient is found to be a critical
condition for instability. Another condition derives from geometric considerations and usually involves a critical
volume enclosed within the entire system. These two conditions together determine the stability ofany multi-lobed
inflatable membraneous structure, regardless of material. Equilibrium states of two and three inter-connected
spherical balloons, whether identical or not, are presented with corresponding stability diagrams and the inflation
history ofsuch configurations is adduced. The scope ofpoly-stable states is described and confirmed experimentally.
Specific results are presented for rubber-like materials that are described by the exponential-hyperbolic elasticity
parameters developed elsewhere [I]. Inadequacies of other theories [3-11] are traced either to improper elastic
representations or to the neglect of one of the dual conditions for stability.

1. INTRODUCTION

A NEW representation of the elasto-mechanical properties of rubber-like materials in terms
of exponential-hyperbolic elasticity parameters has been developed [1], and it has been
verified [2] by a study ofstatic deformations. Here it is applied to problems in static instability
which have not hitherto been adequately explained using earlier representations.

Knowledge of the existence of instabilities in inflated rubber-like membranes is wide
spread, and attempts have been made to account for these theoretically. The first such
analysis seems to have been that of Mallock [3] in 1891 who predicted instability for both
spheres and freely extending circular cylinders upon the attainment of a maximum pressure
at diametral extension ratios of 1·73 and 1·82, respectively. In pressure-controlled experi
ments on india-rubber specimens Mallock reproduced the cylindrical instability and, it
seems, inferred that of the sphere but noted a "close apparent agreement between the
observed and theoretical results (which is) somewhat illusory". His theoretical result
derives from a nonlinear elasticity formulation which exhibits an anisotropy of which,
apparently, he was unaware. Subsequently, Osborne and Sutherlandt [4] in 1909 predicted
the stability of spherical balloons of linearly elastic material but noted that the absence of
a pressure maximum conflicted with their volume-controlled experimental observations of
rubber balloons. Accordingly, they introduced the nonlinear "elastic law of O. Frank"
successfully to achieve a qualitative reconciliation; the peak pressure is then predicted to
occur at a diametral extension ratio of 1·50. Further, they interconnected two identical
spherical balloons and observed a duality of stable configurations, and a snap-through
instability which allowed the interchange of the sizes ofthe balloons, for certain conditions

t These authors mention concurrent work of R. du Bois-Reymond which, however, is not available to the
present authors.
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of the contained volume. They offered no explanation, however. Much later, in 1948, Kubo
[5J studied the characteristics of and predicted a snap-through instability for a sphere of
neo-Hookean (Treloar) material, upon the attainment of a peak pressure at a diametral
extension ratio of 1·38. He claimed complete stability, on the other hand, for circular cylin
drical membranes of the same hypothetical material. Levinson [6J, and later Johnson and
Soden [7J, reproduced Kubo's result exactly for the neo-Hookean sphere although the
former omitted to identify any constraint on pressure or volume at the onset of instability.
Levinson [8J, in addition, found a sphere composed of a Mooney material to be unstable or
not according to the existence or absence of a stationary (maximum) value of the pressure
with respect to distension; in other words, according to the actual elastic constants used in
the Mooney formulation. The corresponding cylinders he reckoned to be always stable.

A feature common to all of these studies is the identification of instability with the
entrance upon a distension region having a pressure gradient that is negative with respect to
one or other finite extension. This criterion is generally offered with an intuitive or physical
basis and only occasionally with analytical support. Burton [9J, in discussing the distension
of biological vessels, for example, deduces such a criterion by physical reasoning based on a
graphical display of the nonlinear elasticity of a hypothetical tissue material. He later
misuses [10J the criterion in demonstrating the instability ("blow-out") of a linearly elastic
cylinder under plane strain which by his own analysis, is actually stable. In any event, it
is generally not recognized, it seems, and only rarely stated that such a criterion is relevant
only to a pressure-controlled condition (and, more precisely, the criterion then refers to a
pressure gradient with respect to enclosed volume). This was recognized by Panovko and
Gubanova [IIJ who, after correctly criticizing the analysis by Rzhanitsyn [12J of the finite
deformation of an incompressible linear elastic spherical membrane, reproduced his value,
~e ~ 1·65, of the diametral extension ratio at which peak pressure is attained; and went on
carefully to distinguish between the stability ofequilibrium when the shell is connected to an
infinite reservoir, on the one hand, and inflated by a pump on the other. The former cor
responds to instability under constant pressure, the latter to complete stability under con
stant volume. In predicting constant-pressure instabilities arising from a negative pressure
gradient, however, it is necessary to give attention to the structural boundary conditions:
not all boundary conditions allow the existence ofa peak pressure, quite apart from whether
the class of material permits it. Johnson and Soden [7J revealed this in their paper, referred
to earlier, which includes a study of the circular cylinder.

The more general problem of instabilities under varying pressure and/or volume was
examined by Corneliussen and Shield [13J who studied comprehensively the vibration and
stability of the simultaneously inflated and extended membraneous circular cylinder. They
discovered instabilities arising from axial or circumferential compression, but more in
terestingly, instability in a region of large extension ratios. Their criterion for this unstable
regime involves the deformation and loading states of course (and, therefore, the boundary
conditions), and the initial aspect ratio of the cylinder as well as the gradients of both the
pressure and axially applied force with respect to the distending and stretching extension
ratios. They delineated, in detail, the stability boundaries for Mooney and Neo-Hookean
material formulations. Their predictions, which are general, have yet to be demonstrated,
however, in real cylindrical membranes composed of rubbery materials.

Overall, the published work is in some respects contradictory and presents neither a
clear nor a comprehensive picture of the stability of inflated membranes of real rubber
like materials. The use (at large extension ratios) of inadequate representations of the
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elasto-mechanical properties of rubber-like material has, naturally, precluded the recon
ciliation of theoretical analyses and experiments where this has been attempted.

The pressure-gradient criterion of stability has not always been accompanied by an
understanding of the need to state explicitly the corresponding boundary conditions. No
attempt has been made to relate the behaviour of rubber membranes to that of soap films
which is well documented and dates back to the work of Plateau [14]. Indeed, the unstable
behaviour of soap films is shown here to lie within the same general framework of that of
membranes composed of materials, such as rubber, that do not have constant surface
stress-resultants. (The stability of soap films is reviewed in the Appendix.)

It is the purpose here to elucidate the actual quantitative behaviour of real membranes.
The problem of instability under constant pressure is given no further attention: sufficient
conditions are the existence.of a negative pressure gradient with respect to volume, together
with the absence of any restriction on the volume of distending fluid communicating with
the membraneous lobe or lobes. A comprehensive set of stability criteria are, therefore,
developed concerning the stability of equilibrium states, under the conditions of volume
constancy, of all membranes regardless of the material composition and without restriction
as to the number of discrete lobes. It is assumed that the distending fluid is essentially in
compressible so that when inflation is achieved with air (or other gas) membranes requiring
gauge pressures large compared with atmospheric are excluded. In other words, membranes
of high curvature or having thick walls may be beyond the description offered here. The
criteria derive, in general terms, from two conditions, the first of which is the well-known
negative pressure-gradient with respect to volume enclosed, the insufficiency of which is
not widely appreciated. The second, which is generally unrecognized, is expressed in various
guises according to the peculiar geometry ofa particular membrane. It relates fundamentally
to the existence of a critical volume of fluid which must be enclosed within the membrane
and the associated tubing and equipment or other reservoir if instability is to occur once the
first condition is met. It is vital that any stability analysis of inflated membranes include for
consideration all fluid (air) with which that enclosed in the membrane itself may communi
cate, particularly any enclosed within a flexible or extensible or adjustable boundary. The
general conditions for interconnected inflated lobular membranes are derived in the next
Section 2. The derivation is introduced by a discussion of the particular properties of inter
connected soap films only in order to emphasize their natural relationship with membranes
of more general type. It is in no sense necessary to the argument, to do this.

In the third section the stability of inter-connected inflated spherical rubber mem
branes is analysed as an illustration of the implications of the general criteria, a direct
application of which leads to stability diagrams specific to spheres of a prescribed material.
Implicit in these diagrams, however, is the behaviour of nonspherical membranes of like
material. New experiments with rubber balloons verify the analytical conclusions.

2. STABILITY CRITERIA FOR MULTI-LOBED MEMBRANES

2.1 Inter-connected spherical soap films

Soap films are characterized by a constant surface stress-resultant arising from molecular
forces. As a consequence of this, the sum of the principal curvatures of the surface must be
constant over the entire soap film, and the inflating pressure must be directly proportional
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to this sum which generally undergoes an initial increase with increasing size followed by a
steady decrease with further increase in size. The requirement of an energy minimum for
stable equilibrium leads to the simple condition that the surface area of the soap film must
be a minimum for the boundary conditions pertaining and for the volume enclosed.

In a classical experiment with soap films (see, for example, Boys [15] and Smith [16]
for illustrated accounts) a small spherical bubble is inter-connected with a larger spherical
bubble; the smaller one becomes still smaller while the larger one grows in size, as shown in
Fig. l(a). The explanation is well known and is conventionally presented [Fig. l(b)], in terms
of the equilibrium relation P = 4T /R, in which P is the inflating pressure, T is the constant
surface stress-resultant for one side of the film and R is the radius ofthe sphere. The bubbles,
initially at points A and B of the hyperbolic characteristic, are inter-connected and air
flows from bubble A to bubble B. This representation obscures the fact that there is a
pressure maximum at C when the bubble A is hemispherical; and that, therefore, the radius
of curvature of the smaller bubble increases as it becomes flatter until equilibrium is
attained at D when both bubbles have the same curvature. However, one is practically
flat and the other very nearly a complete sphere, the two forming complementary portions
of a single sphere, which is clearly the minimal surface area enclosing a given volume. These
obscurities can be removed by plotting the pressure against a monotonic quantity such as
the height H or the total volume V of the bubbles. In terms of the height H of the crown
of a single bubble above the edge ring of common radius Ro for both bubbles [Fig. l(a)], the

o
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FIG. I. Instability of inter-connected spherical soap films.
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inflating pressure is given by

847

(2.1)

where Pmax = 4T j Ro.
The pressure, thus, attains a maximum value (Fig. 2) at HjRo = 1, as is well-known, when

the bubble is precisely hemispherical.
Consider now the possible states of equilibrium of two interconnected bubbles at the

same pressure, when the equilibrium condition (2.1) applies equally to both. The bubbles are
either of identical volume or not. In the first event, the total volume is twice that of a single
bubble; that is, the total reduced volume Vred = VjR~ = (nj3)(HjR o)[3+(HjRo)2], a
relationship which plots in the upper part of Fig. 2 as the curve ABC. In the second event,
it is not difficult to show that the total volume is always that of a complete sphere, as
already implied, so that, through equation (2.1), the total reduced volume becomes
(nj6){[1 +(HjRo)2]j(HjRoW, the curve DBE of Fig. 2. The point B has the co-ordinates
(1, 4nj3). All possible equilibrium states of two inter-connected bubbles supported on rings
of identical radius Ro are contained in this representation and it is to be observed that for
volumes (masses)t sufficiently high, v..ed > 4nj3, dual configurations exist: it remains to
discriminate the stable from the unstable configurations.

1000

;f
!

c/ E
on 100 :..
:0
.<:l
::>m
0

~
l-

.E..
E

10
~
-0..
U
::>
-0..
a:::

M
~ow

a.E
a:
~
::>

e
Pr~sslTeIt

-0..
u
-5..
a::: 0.1

0.1 10

Non-di~sionaliz~d H~ight H/Ro

FIG. 2. Stability diagram for two spherical soap bubbles.

t The mass and volume are essentially proportional because the gauge pressure is negligible by comparison
with atmospheric pressure.
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Now along ABD, H/Ro < 1, it can be shown that ap/av, is positive, V, being the volume
of a single bubble, whereas along BC and BE, ap/av; is always negative. It follows that for
two interconnected identical bubbles the equilibrium state is stable for H /Ro ::s; 1, along AB,
and unstable for H/R > 1, along BC; for any transfer ofair creates a pressure difference that
opposes the transfer in the former event, and accelerates it in the latter event, from the smaller
to the larger bubbles. The two bubbles being different in size, similar reasoning shows the
equilibrium states, represented by the curve DBE, to be always stable. For any transfer of
air creates, in the bubble having ap/av; > 0, an opposing pressure difference and in the
bubble having ap/aV; < 0 an accelerating pressure difference, the former influence always
dominating the latter, for spherical bubbles of constant surface stress-resultant: the sum
oP/avl +oP/oV2 is, in fact, proportional to 1- [PjPmaxf which is always positive, except
when P = Pmax (at the point B of Fig. 2), when it becomes zero. At this point B, each of
iJP/avl and iJP/iJV2 is zero (neither iJP/iJV1 nor iJP/iJV2 can, by itself, be zero for a common
pressure) and it becomes necessary to determine the nature of stability by considering the
higher derivatives. The second derivatives are, in this case, the same (and actually negative),
so that the third derivatives (which are both positive) assure stability.

It is evident, then, that for two spherical membranes characterized by identical constant
surface stress-resultants and subject to a common pressure the nature of the stability is
governed by sufficient conditions of the sort:

(i) iJP/iJV1 > 0 and ap/ov2 > 0 stable
(ii) iJP/av; > 0 and oP/iJVj < 0 stable

(iii) oP/iJVI = 0 and oP/oV2 = 0 stable
(iv) oP/oVI < 0 and ap/ov2 < 0 unstable,

where the first and second bubble are denoted by subscripts 1 and 2, respectively, and the
last condition (iv) is necessary, as well, for instability.

Examination reveals that the addition of any number of bubbles each less than a
hemisphere and at the common pressure of the two given bubbles has no effect on the
stability in case (i), while the addition of even one bubble greater than a hemisphere renders
case (ii) unstable because it transforms that configuration to essentially that pertaining in
case (iv). Ifa sufficiently large number of bubbles each less than a hemisphere are combined
with one larger than a hemisphere so that iJP/av; is more negative for the large bubble thap.
oP/oV; is positive for the combination of all the smaller ones, the large bubble is now
rendered unstable and one of two stable equilibrium forms is adopted. That this is so is
established by considering a small amount of air transferred from the larger to the smaller
bubbles. The excess pressure is now in the larger bubble and the transfer continues until a
stable state is reached in which all the bubbles are the same size and each is less than a
hemisphere. If the disturbance is of the opposite form and the excess air is transferred to the
larger bubble, the pressure excess is now contained within the smaller bubbles and the
larger bubble increases in size: it does not, in fact, burst because no matter how great the
(finite) number of small bubbles added ap/av, cannot remain more negative for the larger
bubble than iJP/iJV, is positive for the sum of the smaller (nearly flat) bubbles as the volume
in the smaller bubbles approaches zero when practically all of the air is in the large bubble.
Thus, condition (ii) requires slight modification to cater for a multi-lobed membraneous
structure with more than two lobes.

It might be remarked, finally, that the interconnection of two bubbles each having
a peculiar constant surface tension T and, therefore, of different material, affords the
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possibility of more elaborate behaviour. This is true, also, when the boundary radius Ro
differs for each bubble, whether of the same material or not; for then the pressure-height
curves are not coincident. The nature of the additional equilibria may be appreciated from
the corresponding later discussion of unequal rubber-like membraneous lobes.

Figure 2 can also be interpreted as an unambiguous criterion of the stability of inter
connection of two bubbles initially at differing pressures. Thus, the pressure or height of
each is located on the lower pressure curve and projected separately and vertically to
intercept the line ABC. The mean of the two volume intercepts determines the total volume
enclosed by the two bubbles. And if this mean lies on the part AB of the curve, it defines, by
reverse projection, the pressure and height of the stable pair ofidentical bubbles which result
from inter-connection. If, however, the mean intercept lies on the part BC of the curves ABC,
the corresponding horizontal intercepts with the curve DBC designate, by projection to the
pressure curve, the common pressure and differing heights of the two unequal bubbles that
form a stable configuration derived from the initial unequal pair by interconnection. It
becomes very clear that the conventional statement concerning the stability of two such
inter-connected bubbles is incomplete, for it is restricted to an initial configuration con
sisting of bubbles each at least hemi-spherical in size and having, therefore, a total volume in
excess of that corresponding to the critical state B. For conditions other than this, the smaller
bubble enlarges or diminishes while the larger bubble diminishes or enlarges, respectively,
according as the volume enclosed is less or greater than this critical volume. In particular,
if both bubbles initially form less than a hemisphere the behaviour is the converse ofthat of
two bubbles each greater than a hemisphere: two identical bubbles then co-exist in stable
equilibrium.

2.2 General stability criteria for multi-lobed iriflated membranes

It is to be noted that, in deducing the criteria (iHiv) above, the physical argument in
voked the special geometric properties of the sphere and the special circumstance of con
stancy of the surface stress-resultant only in relation to the conditions (ii) and (iii). And this
became necessary in order to determine the relative magnitudes of the absolute values ofthe
pressure gradients of each individual bubble. By relaxing these special restrictions on
geometry and material an entirely similar argument can be propounded and analogous
conditions of stability adduced which apply quite generally to arbitrary arrangements of
arbitrarily shaped membraneous lobes of whatever material. The more general criteria,
it might be expected, differ only in being more explicit about the relative magnitudes ofthe
absolute values of ap/a~ when these exhibit different signs.

Thus, consider n lobes each of arbitrary shape and material of which m lobes encompass
a volume Vm and the remainder a volume v,,-m' Associate with each of these volumes,
respectively, the pressures Pm and Pn- m and the small volume changes ~Vm and ~v,,-m

resulting from the transfer ofa small mass of air between them. IfP be the common pressure
obtaining in the equilibrium state prior to the transfer then

(2.2)
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(2.4)

and, the system being closed, ~ V", +~ v" _m = 0 relates the volume changes when the dis
tending fluid is essentially incompressible. The pressure differential created by the transfer
is, therefore,

[°pap ] 1 2 [a2p a2p ]P",-Pn-", = ~V'" av: +av.- +2[~Vm] av2- oV2
m n-m rn n-m

1 [a 3
p a3

p ]
+6[~VmP av3+~ + ...

which is usefully written m n - m

Pm-Pn-m = (ap +~) +!~V: (a
2
p __a

2
p )

~Vm aVm aVn-m 2 m av;, aV;_m

1 (a 3
P a3

p )
+6~V;' av;,+ oV;_m +... (2.3)

Now stability requires a pressure differential which opposes the transfer so that, for
stability of the initial equilibrium state, P'" - Pn - m Z 0 according as the transfer increases or
decreases, respectively, the volume Vm ; that is, according as ~ V", ~ O. Consequently, for
stability against a perturbation ~Vmthat is so small that (~Vm)2, (~Vm)3, ... may be neglected,
it is necessary that the conditions

ap+~>O
aVm av,,-m

be satisfied for all possible values of m = 1,2, ... , n - 1 and, for a given m, for all possible
combinations of lobes. These p conditionst are necessary because the failure of (2.4) for
just one combination of lobes for some one value of m allows instability. Taken together
the conditions (2.4) are sufficient to ensure stability, for the class of volume perturbation
considered.

In the event that both ap/avmand oP/av,,-m simultaneously vanish, the inequality of the
second derivatives of equation (2.3) ensures instability. And should the second derivatives
be equal, the sum of the third derivatives provides the criterion as was the case at the
equilibrium bifurcation point for the two spherical bubbles of constant surface tension. It is
evident, too, that a sufficient condition for instability is that the sum (2.4) of the two first
derivatives be negative, or zero (if metastability is classed as instability), for any single
combination of lobes.

It is convenient, in a particular problem, to assess the gradients ap/avmand ap/av,,-m
individually for sign and magnitude. It follows, then, from the criterion (2.4) that a multi
lobed inflated membraneous structure is
1. stable if oP/avm> 0 and ap/av,,-m > 0 for all and any m;
2. stable if ap/avm> 0 and oP/ov,,-m ~ 0 for r combinations Vm, v,,-m, provided that

ap/avm> loP/ov,,-ml for these r combinations, and the condition is satisfied for all
remaining volumetric combinations;

3. unstable if ap/ovm~ 0 and 8P/av,,-m < 0 and also lap/av,,-ml > oP/avmfor some one
combination Vm, v,,-m;

4. unstable ifoP/avm< 0 and ap/ov,,-m < 0 for some one combination oflobes for anyone
value ofm.

s

tHere p = L .em , where s = n/2 and (n-I)/2 for 11 even and odd. respectively. This gives, for 11 odd,
m""'t

p = 2.- 1
- I or p = 0,3, 15,63, ....



Multi-lobed inflated membranes: their stability under finite deformation 851

For the case of identically zero pressure gradients for all lobes in some one combination
or more, the first derivatives are to be replaced by higher derivatives as earlier indicated.

The condition in case 3 for whichaFlavm= oand aFlav,,-m < ocaters for the case ofan
individually-stable inflated membrane with a negative pressure gradient communicating
with an inextensible vessel of infinite capacity filled with air at the same pressure: that is, for
the case of constant pressure instability. For, if some air be transferred from the membrane
to the tank, the pressure excess will be in the membrane, and hence the transfer of air will
continue. Likewise, if some air be transferred to the membrane, the pressure excess will now
be in the reservoir and the situation is again unstable. This explains a phenomenon noted by
Searle [17] that an initially-stable soap-film cylinder for which n ~ Ilr ~ 2n becomes
unstable when communicating with an infinite reservoir, while an isolated cylinder is stable
untillir ;;;:: 2n. The explanation of the different critical lengths lies in the fact [14] that for a
cylindrical soap film supported on two parallel circular rings of radius r separated by a
distance I, oFlav > 0 for Ilr < n, oFlaV = 0 for Ilr = nand oFlav < 0 for Ilr > n.
Therefore, one cylinder of Ilr > n inter-connected with an infinite reservoir is unstable in
accordance with criterion 3, while an isolated cylinder of Ilr ;;;:: 2n is unstable because it
represents two identical cylinders in combination, each of Ilr ;;;:: n, which are unstable
according to criterion 4.

In contrast with soap-films, rubber-like membranes are characterized by principal
surface stress resultants which increase with increasing extension-see, for example, equa
tions (2.13) and (2.14) of Ref. [2]. Furthermore, the pressure almost invariably initially in
creases to a maximum at quite a small increase in size (less than 50 per cent) and decreases
to a minimum (at about three to four times the size) after which the limited extensibility ofthe
long-chain rubber molecules results in a pressure increase notwithstanding the steady
decreases in principal curvatures. The condition of minimal surface area no longer obtains.
This final pressure increase for rubber-like membranes increases the number of stable
configurations for inter-connected rubber membranes over that which holds for soap
films, but otherwise their behaviour is very similar, and the criterion (2.4) and the conditions
1-4 cater equally for both; and, indeed, for all membranes regardless of composition.

3. STABILITY OF INFLATED INTER-CONNECTED
SPHERICAL RUBBER MEMBRANES

It has already been hinted that the modes of behaviour possible of membranes of
different materials such as the rubber-like long-chain polymers, are more diverse than those
already discussed, yet still consistent with the general criteria. And this diversity is now to be
elucidated by a consideration, first, of spherical rubber membranes. By this means, all geo
metric criteria such as those governing the stability of the soap-film cylinder, unduloid,
nodoid and catenoid (as outlined in the Appendix) can be excluded, and only material
effects considered.

Spherical rubber balloons have been studied in great detail elsewhere [1], and in
quantitative experiments on isolated balloons no instability was observed at any stage. In
applying the stability criteria above to two inter-connected balloons, it is necessary to take
as a starting point the pressure-mass relation for a single sphere. As before, the enclosed
mass is again directly proportional to the volume ofa balloon and the pressure and volume,
in lieu of mass, can be inter-related through the deformation of the membrane. Using the
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exponential-hyperbolic elasticity parameters [1J to represent the material properties, the
non-dimensionalized pressure and volume may be expressed in terms of the circumferential
extension ratio A in the form

(3.1)

(3.2)

where P is the actual inflating gauge pressure, A is the initial radius of the membrane
(balloon), h is the initial thickness, G, k , and kz are the finite-elasticity constants, V is the
volume and the strain invariants E1 and 1z are expressed here as functions of the extension
ratio Aby the relations

E, = 2Az+(1/A4 )-3,

12 = A4 +(2/AZ
).

(3.3)

(3.4)

This pressure-volume relation for a single sphere (which is substantiated by quantitative
experiments elsewhere [1J) is plotted in the lower part of Fig. 3 for typical values of the
finite-elasticity constants (k , 0·0002, kz = 0·5). The existence of a pressure maximum
followed by a minimum, which is characteristic of nearly all inflated rubber membranes, is
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evident. This contrasts with the pressure-volume relation for spherical soap films (Fig. 2),
which exhibits only the pressure maximum. And it is this property which allows a greater
number of stable equilibrium configurations for the rubber membranes. It cannot be over
emphasized that a realistic analysis and understanding oftheir diverse behaviour can only be
attained by the proper representation of the elastic properties of the membrane.t Some of
the consequences of mis-representing physical fact, in this regard, become apparent in dis
cussion elsewhere on cylindrical membranes.

Two initially identical spheres, each characterized by the same pressure-extension
curve exhibited in the lower part of Fig. 3, which are inflated to enclose a given total volume
possess stable configurations upon interconnection determined solely by that total volume
and the criteria 1-4 of the previous section. Thus, in the upper part of Fig. 3 are shown
for a prescribed total volume, the available configurations of the two spheres whether identi
cal (along AG) or not (along BDED'B'). The nature of the stability, at any volume, is
determined directly from the criteria 1-4 with the results indicated in Fig. 3.

The significant differences in behaviour between that of the rubber membranes and the
soap films lie in the stable co-existence of two large rubber spherical membranes in the
positive pressure-gradient region EG and beyond, a region not found in the soap film
pressure characteristic. As a consequence of this, the rubber membranes exhibit also a bi
stable region in which two identical inter-connected balloons in stable co-existence between
regions E-F and E'-F, respectively, can be popped-through to an alternative stable state.
In this, one very small balloon persists in the region D-H and the other balloon, larger
than before, in the region D'-H'. As with the soap-bubble membranes, two inter-con
nected spheres in the negative pressure-gradient region B-E (or B'-E') represent an unstable
combination; one bubble decreases in size to become smaller than at the peak pressure, while
the other one increases. In the region B'-J' the larger balloon remains in the negative
pressure-gradient region, while from J' to E' it passes to the second positive pressure
gradient region C-D'.

Inasmuch as the stability curves are determined essentially by the nature ofthe pressure
deformation characteristic, the same qualitative behaviour can be attributed to membranes
having like characteristics. In particular, a qualitatively identical stability chart can be
deduced for the inflation of inter-connected uniform flat circular rubber membranes, which
exhibit the same sort of inflation characteristic [2].

Figure 3 defines, also, the behaviour of two inter-connected identical balloons during
simultaneous inflation. Until the peak pressure is reached the two spherical balloons remain
identical (along AB) but, thereafter, one decreases in size from B to C while the other in
creases in size along the negative pressure-gradient region, from B' to C. The combination
is stable at all stages, since the stable equilibrium is determined uniquely by the volume of
air enclosed. As the large balloon passes through the pressure minimum at C, the smaller
balloon starts increasing in size again until in due course the pressure maximum is attained
at D. Upon further inflation the balloons undergo a snap-through transformation into two
identical balloons at F and F. If air be withdrawn at this stage, the two balloons together
diminish in size but remain identical, until the pressure minimum is reached (E-E'); and if
further air be extracted, a snap-through transition to the different states Hand H' occurs.
Alternatively, both balloons being at (or beyond) the pressure minimum (E-E'),they increase

t The influence ofthe values of the finite-elasticity constants k1 and k2 on the value of the extension ratio of
the maximum and minimum pressures is discussed elsewhere [1].
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in size together as air is admitted, remaining identical until failure. Naturally, at any stage in
the intervals B-C-D and B'-C'-D', the sizes of the respective balloons can be interchanged
to reverse the configuration, which remains stable.

The bi-stable configuration is readily observed experimentally, as implied by Fig. 4,
but the actual simultaneous inflation of two balloons reveals many other phenomena. These
can be explained in terms of differing initial thicknesses (or sizes) ofthe two balloons which
means that one reaches its peak pressure prior to the other. Then, the Fig. 3 takes on the
appearance of Fig. 5, in which one of the balloons (designated as sphere 2 and represented
by the primed lettering and associated with the subscript 2), is half as thick, or twice as
large, as the other (designated as sphere 1). Its inflating pressure is always one half that of
the other for any common extension-ratio, as shown in the pressure characteristic in the
lower part of the figure. When simultaneously inflated,t both spheres initially increase in
size, sphere 1 from A to B and sphere 2 from A' to B'. When sphere 2 reaches the pressure
maximum at B', continuing injection of air causes sphere 2 to grow steadily in size from B'
to C', while sphere 1 decreases from B to C. Thereafter, sphere 1 increases in size again from
C to D while sphere 2 follows the second positive pressure-gradient from C' to D'. Further
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FIG. 4. Stable combinations of two rubber spherical membranes-experiment.

t The following description explains the phenomenon of Pollock and Boshes [23] who remark on the influence
of the pressure-volume gradient during the distension of membranes. "This is seen in the case of a balloon partially
constricted at its upper one-third by a ligature. When a head of pressure is put on the contents of such a balloon,
the part with the larger area distends until it is rigid and large; the smaller part seems softer and is but little dis
tended."
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FIG. 5. Stability diagrams for two spherical rubber membranes.

admission of air at this stage causes a snap-through transition to F and F', respectively,
in which state the initially thinner (or larger) balloon 2 is at a higher extension-ratio than is
balloon 1 (if initially larger it appears larger still in proportion). If air be withdrawn at
the states F and F' the balloons decrease in size until the states E and D' are reached, at
which sphere 1 has reached its pressure minimum. Further removal of air causes a snap
through transition to M and M'. As with the identical balloons, introduction of more air
beyond E-E' causes both balloons to grow steadily in size.

Provided that the pressure maximum of the thinner (or larger) balloon is greater than
the pressure minimum of the other balloon, the direct inter-change of the states B-C-D and
B'-C'-D' which could be achieved from identical balloons is now replaced by an indirect
inter-change to a further equilibrium combination which is isolated from those discussed
in the paragraph above. If the two balloons are independently brought to their common
negative pressure-gradient region L-K and L'-K' respectively and then inter-connected,
they do not snap through to any ofthe stable states above. Instead, sphere 2 decreases in size
to the region below L' extending slightly beyond H', while sphere 1 increases in size beyond
L; and depending on how close the original states are to K, remain in the negative pressure
gradient region or may increase to just past K. Further air added to this combination main
tains equilibrium with sphere 1 on the second positive pressure-gradient H-J and sphere 2
in the region H'-J' until the second sphere reaches its peak pressure at J'. A snap-through
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transition then occurs in which sphere 1 greatly decreases in size from more than that at
the pressure minimum to less than that at the pressure maximum, while sphere 2 increases
in size from that at the pressure maximum to more than that at the pressure minimum,
which is seen from the upper curve in Fig. 4 to be the only stable combination for that
particular enclosed volume. Although the addition of excess air to the discrete loops
L-H-J-K and L'-H'-J'-K' will cause a snap-through transition to the outer envelopes
B-C-D and B'-C'-D', the converse cannot be achieved without additional constraints
to suppress the normal decrease in size ofboth balloons together. The upper diagram in Fig.
Scorresponds accurately to the lower one for the points designated by subscript 2, while the
points with subscript 1 refer to a balloon with only a slightly lower peak pressure than
sphere 1. Points N 3 and N~ indicate the limit to which the loops L-H-J-K reduce when
the maximum pressure of sphere 2 coincides with the minimum pressure of sphere 1. The
existence of this discrete stability loop can be demonstrated on the rig on which the ex
perimental observations recorded in Fig. 4 were made.

In this rig each of up to three balloons can be individually inflated or deflated while the
remainder is isolated; and any two or more balloons can be inter-connected. The pressure in
each individual balloon is displayed on an attached V-tube manometer. This rig was used
to verify qualitatively all the stability criteria developed in Section 2 for multi-lobed inflated
membraneous structures. The V-tube manometers facilitated bringing each balloon to the
same pressure before opening the valve{s) between them. Even the discrete stability loop in
Figs. 4 and S for spherical balloons of a different thickness (or size) was found to obey the
criteria 1-4.

Figure 6, based on Fig. 3, is a theoretically-derived stability chart for three identical
inter-connected spherical rubber balloons. Here a small tri-stable region is evident as well
as two bi-stable ones. The numbers on the lines refer to the number (I, 2 or 3) of balloons in
that state. This behaviour was verified qualitatively on the rig above and, as predicted by
the criteria, three identical balloons can co-exist on either of the two positive pressure
gradient regions ab, fg.

Vpon simultaneous inflation from zero pressure several phenomena are possible as the
total enclosed volume becomes large. Beyond and above the bifurcation point b, one very
large sphere proceeds to e along the right-hand branch be while two small and identical
spheres proceed to e along the left-hand branch be. An appropriate disturbance results in
snap-through of all three spheres to the stable branch fg when they all assume an identical
size, slightly smaller than the original large sphere. In such a simultaneous snap-through of
the two smaller spheres the system behaves essentially as a 2-lobed one. A more likely event
is the transition of the single large sphere from the right-hand point e to the nearer and
adjacent stable branch de in which it suffers a small diminution in size. Of the two small
and identical spheres at the left-hand points e one enlarges extremely to equalize in size the
first sphere while the other decreases slightly in size to stabilize on the left-hand branch de.
It requires, then, further injection of air to cause this last sphere finally to snap-through
with a major change in size to join the other equal spheres on the branch fg, when they
all become identical. Superficially, then, the gross appearance is a consecutive snap-through
of the two smaller spheres to match in size the first fully inflated sphere. This behaviour is
consistent with the behaviour of multi-lobed party balloons in which the balloon inflates
progressively one lobe at a time, with never more than one lobe at a time in the negative
pressure-gradient region. The thickness variation in these balloons is such that the first
lobe usually, but not always, inflates first and the end lobe last, as depicted in Fig. 7.
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FIG. 6. Stability diagram for three identical spherical rubber membranes.

4. CONCLUSION

The investigations above, both theoretical and experimental, of inter-connected rubber
spheres and of inter-connected soap films confirm, as special examples, that the stability
criteria proposed quite generally and separately in Section 2 are realistic; and that in each
case two conditions are required to discriminate between stability and instability. The first of
these is a negative pressure-gradient with respect to volume, which is well-known, but the
insufficiency ofwhich is not so widely appreciated. The other is a geometric condition which
adopts various guises according to the specific situation under investigation. Basically it
represents a critical mass (volume) which must be enclosed within a system if instability is
to occur once the first condition is met.

For example, two inter-connected spherical balloons are in stable equilibrium ifone is in
the negative pressure-gradient region and the other is in the first (smaller-size) positive
pressure-gradient region, even though the pressure-gradient for the entire system is negative.
But, when more air is added, so that both balloons are in the negative pressure-gradient
region, the combination is unstable, remaining so while one balloon is in the negative
pressure-gradient region and the other is inflated into the second (larger-size) positive
pressure-gradient region. With further increase in the amount of air enclosed the instability
is removed as both balloons reach the second positive pressure-gradient region.
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FIG. 7. Inflation of multi-lobed balloon.

Most inflated rubber membranes possess a characteristic pressure-inflation relation
with two positive pressure-gradients with respect to volume separated by a region of
negative pressure-gradient, there being, consequently, a pressure maximum followed by a
pressure minimum. This characteristic is sufficient to ensure that any two inter-connected
balloons possess a bi-stable region in which two identical balloons near the lower size limit
of the second positive pressure-gradient can be popped-through to an alternative stable
combination of one small balloon on the first positive pressure-gradient region with the
other remaining in the second, and vice versa. Three inter-connected balloons may have a
tri-stable as well as two bi-stable regions.

The comparison of previous analyses ofsuch topics as are discussed here with the present
one has emphasized the need for maintaining a close liaison between the theoretical
representation of the problem and the actual physical situation. In particular, in invoking
the stability criteria derived here, it is important to represent the elastic properties of the
membrane in a realistic manner if the diverse stability phenomena are to be accurately
predicted, even qualitatively. Either the exponential-hyperbolic elasticity parameters [IJ
or the Carmichael and Holdaway [18J stress function are appropriate for rubber-like
materials.
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APPENDIX

The stability of soap-film membranes

Soap films are characterized by a constant surface stress-resultant due to the surface
tension arising from molecular forces. They have been studied comprehensively in the past,
and such an examination is given by Maxwell [19]. For the present purposes it is appropriate
to review only the axi-symmetric forms and the conditions governing their stability. This
review serves primarily to show how the general stability criteria 1-4 developed in Section
2.2 apply to soap films.

Plateau [14] was the first to show that there are only six surfaces of revolution which an
axi-symmetric soap-film can adopt and yet retain equilibrium. These are the plane, the
cylinder, the sphere, the catenoid, the unduloid and the nodoid, which are illustrated in
Fig.8.t

t The mathematical inter-relation of these surfaces is expressed by the fact first shown by Delaunay [20] that
the plane curves by whose revolution they are generated are themselves generated as "roulettes" of the conic
sections. More recent expositions of this inter-relation are given by Thompson [21] and by Maxwell [19].
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FIG. 8. Plateau's axi-symmetric soap films.

It is noteworthy that of these surfaces only the sphere is a closed surface and capable
of existence in isolation, and that the plane and catenoid can exist only in the absence of a
pressure differential. Plateau discovered also that, with the exception of the plane and the
sphere (or any portion thereoO, these surfaces are in complete equilibrium only within
certain geometric limits. That is, their stability or instability is determined by their propor
tions. The symmetry of the perfectly-stable surfaces ensures that any small disturbance
readjusts itself leaving the plane or spherical surface whole, provided that it does not
communicate with any other volumes ofair in the manner of the inter-connected spheres of
Section 2. On the other hand, in the remaining configurations any disturbance once set up
will be propagated with increasing amplitude.

A well-known instability phenomenon associated with soap films is the disintegration of
an isolated cylinder whose length-to-diameter ratio exceeds the critical value 11:, established
by Plateau [14, p. 293]. By considering the surface area of the deformed soapfilm, Plateau
established that, for shorter cylinders, a bulge without volume change is associated with a
pressure increase, the lower pressure region being the neck (or waist). Such short cylinders
are thus stable. The unstable long cylinder is transformed into an increasingly severe un
duloid-like surface and eventually disintegrates when the waist has vanished. (The liquid
cylindrical jet studied by Rayleigh [22], ofwhich the behaviour is governed by much the same
equilibrium equations, breaks up into a series of alternate large and small spheres.) It is
apparent, by analogy, that the critical length of the unduloid is one wavelength. Maxwell
[19] has shown that the catenoid is stable only wnen the portion considered is such that the
tangents to the catenary at its extremities intersect before they reach the directrix (axis of
revolution), except when each end of the catenoid is sealed so as to maintain constant the
volume enclosed. There are then two stable catenoids for each set of boundary conditions.
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The uniform excess pressure on the nodoid is everywhere on the concave side of the curve,
so only isolated portions of it can be realized; and the question of instability cannot there
fore arise until one complete wavelength is achieved, whereupon the inner loop closes upon
itself and may be removed, in theory, as an inflated doughnut-like membrane. The outer
portion that remains is less than a complete wavelength and may be re-inflated. The
transition from one of these axi-symmetric soap-films to another is depicted theoretically
in Fig. 9 in which the respective diagrams are arranged in ascending order of volume en
closed, proceeding across and then down the page. This sequence does not appear to have
been examined before.

Inner Nodoid

Cylinder

Catenoid

Outer Unduloid

Inner Undllioid

Sphere

Outer Nodoid Maximum Nodoid

FIG. 9. Axi-symmetric soap films in order of increasing volume.

(Received 8 May 1967; revised 14 July 1970)

A6cTpaKT-MccJIei:\yeTClI, TeOpeTli'lecKH, YCTOH'IHBOCTb Ha)],yToH MeM6paHHoH c!\JepbI H3 pe3l.\HOno)],o6Horo

MaTepllaJIa. KpHTeplilI YCTOH'IHBOCTH nO)],TBeplK)],aIOTClI 3Kcnep1IMeHTaJIbHO. Onpe)],eJllIeTClI, 'ITO

OTpHl.\aTeJlbHbIH rpa)],HeHT 06beMa )],aBJleHHlI, )],aeT KpHTH'IeCKOe YCJlOBHe )],JllI HeYCToH'IHBOCTH. )lpyroe

YCJlOBlie BbITeKaeT H3 reOMeTpH'IeCKHX paccylK)],eHHH. OHO, 06bIKHOBeHHO, 3aKJlIO'IaeT KpI1TH'IeCKI1H

06beM, 3aKJlIO'IeHHbIH BHyTpH l.\eJlOH CI1CTeMbI. 3TH )],Ba YCJlOBHlI onpe)],eJlllIOT, COBMeCTHo, YCTOH'IHBOCTb

)],Jlll KaKOH JlH60 HanOJlHeHHOH B03)],yXOM MeM6paHHOH KOHCTPYKl.\1111 C MHorHMH )],Ha!\JparMaMI1, He

06pawall BHHMaHHlI Ha MaTepHaJl.npe)],CTaBJllIIOTClI COCTOllHHlI paBHOBeCl1lI )],JllI )],ByX HJIH Tpex, coe)],I1H~
HHbIX C c06oll:, c!\JepH'IeCKHX B03)],yWHbIX wapOB, KOTopble MoryT 6blTb O)],I1HaKOBbl HJlI1 HeT, COBMeCTHO

C cooTBeTcTBylOwHMH rpa!\JHKaMH YCTOH'IHBOCTH. )laeTclI TaKlKe HCTOpHlI KalK)],oH KOH!\Jl1rypal.\l1l1.

OnllcbIBaeTclI 06JlaCTb HCCJle)],OBaHHlI MHoroycToH'II1BblX COCTOlIHHH, 'ITO nO)],TBeplK)],aIOTClI 3KcnepH

MeHTaJlBHO. npIIBO)],lITClI Cnel.\I1«pH'IHble pe3YJlbTaTbl )],JllI pe3l1Hono)],06HblX MaTepl1aJlOB, Onl1CaHHbIX C

nOMOWblO 3KCnOTeHl.\HaJlbHO-rllnep60JlH'IeCKHX napaMeTpOB ynpyrocTH, BbIBe)],eHHbIX r)],e-HH6y)],b B

)],pyroM MeCTe B pa60Te [1). I1cCJle)],YIOTclI HeCOOTBeCTBl1lI )],pyrHx TeopHH [3-11), Jll160 )],JllI cpaBHeHHlI

ynpyrHx peweHHH, JlH60 )],JllI npeHe6pelKeHI11I O)],HI1M H3 )],ByX YCJlOBHH YCTOH'II1BOCTH.


